3.426 \(\int \frac{x^5}{(8 c-d x^3)^2 \sqrt{c+d x^3}} \, dx\)

Optimal. Leaf size=64 \[ \frac{8 \sqrt{c+d x^3}}{27 d^2 \left (8 c-d x^3\right )}-\frac{10 \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{3 \sqrt{c}}\right )}{81 \sqrt{c} d^2} \]

[Out]

(8*Sqrt[c + d*x^3])/(27*d^2*(8*c - d*x^3)) - (10*ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])])/(81*Sqrt[c]*d^2)

________________________________________________________________________________________

Rubi [A]  time = 0.0506441, antiderivative size = 64, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.148, Rules used = {446, 78, 63, 206} \[ \frac{8 \sqrt{c+d x^3}}{27 d^2 \left (8 c-d x^3\right )}-\frac{10 \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{3 \sqrt{c}}\right )}{81 \sqrt{c} d^2} \]

Antiderivative was successfully verified.

[In]

Int[x^5/((8*c - d*x^3)^2*Sqrt[c + d*x^3]),x]

[Out]

(8*Sqrt[c + d*x^3])/(27*d^2*(8*c - d*x^3)) - (10*ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])])/(81*Sqrt[c]*d^2)

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 78

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> -Simp[((b*e - a*f
)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(f*(p + 1)*(c*f - d*e)), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1)
+ c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f,
 n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ
[p, n]))))

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x^5}{\left (8 c-d x^3\right )^2 \sqrt{c+d x^3}} \, dx &=\frac{1}{3} \operatorname{Subst}\left (\int \frac{x}{(8 c-d x)^2 \sqrt{c+d x}} \, dx,x,x^3\right )\\ &=\frac{8 \sqrt{c+d x^3}}{27 d^2 \left (8 c-d x^3\right )}-\frac{5 \operatorname{Subst}\left (\int \frac{1}{(8 c-d x) \sqrt{c+d x}} \, dx,x,x^3\right )}{27 d}\\ &=\frac{8 \sqrt{c+d x^3}}{27 d^2 \left (8 c-d x^3\right )}-\frac{10 \operatorname{Subst}\left (\int \frac{1}{9 c-x^2} \, dx,x,\sqrt{c+d x^3}\right )}{27 d^2}\\ &=\frac{8 \sqrt{c+d x^3}}{27 d^2 \left (8 c-d x^3\right )}-\frac{10 \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{3 \sqrt{c}}\right )}{81 \sqrt{c} d^2}\\ \end{align*}

Mathematica [A]  time = 0.04724, size = 63, normalized size = 0.98 \[ -\frac{8 \sqrt{c+d x^3}}{27 d^2 \left (d x^3-8 c\right )}-\frac{10 \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{3 \sqrt{c}}\right )}{81 \sqrt{c} d^2} \]

Antiderivative was successfully verified.

[In]

Integrate[x^5/((8*c - d*x^3)^2*Sqrt[c + d*x^3]),x]

[Out]

(-8*Sqrt[c + d*x^3])/(27*d^2*(-8*c + d*x^3)) - (10*ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])])/(81*Sqrt[c]*d^2)

________________________________________________________________________________________

Maple [C]  time = 0.012, size = 861, normalized size = 13.5 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^5/(-d*x^3+8*c)^2/(d*x^3+c)^(1/2),x)

[Out]

1/27*I/d^4/c*2^(1/2)*sum((-d^2*c)^(1/3)*(1/2*I*d*(2*x+1/d*(-I*3^(1/2)*(-d^2*c)^(1/3)+(-d^2*c)^(1/3)))/(-d^2*c)
^(1/3))^(1/2)*(d*(x-1/d*(-d^2*c)^(1/3))/(-3*(-d^2*c)^(1/3)+I*3^(1/2)*(-d^2*c)^(1/3)))^(1/2)*(-1/2*I*d*(2*x+1/d
*(I*3^(1/2)*(-d^2*c)^(1/3)+(-d^2*c)^(1/3)))/(-d^2*c)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*(I*(-d^2*c)^(1/3)*_alpha*3^(
1/2)*d-I*3^(1/2)*(-d^2*c)^(2/3)+2*_alpha^2*d^2-(-d^2*c)^(1/3)*_alpha*d-(-d^2*c)^(2/3))*EllipticPi(1/3*3^(1/2)*
(I*(x+1/2/d*(-d^2*c)^(1/3)-1/2*I*3^(1/2)/d*(-d^2*c)^(1/3))*3^(1/2)*d/(-d^2*c)^(1/3))^(1/2),-1/18/d*(2*I*(-d^2*
c)^(1/3)*3^(1/2)*_alpha^2*d-I*(-d^2*c)^(2/3)*3^(1/2)*_alpha+I*3^(1/2)*c*d-3*(-d^2*c)^(2/3)*_alpha-3*c*d)/c,(I*
3^(1/2)/d*(-d^2*c)^(1/3)/(-3/2/d*(-d^2*c)^(1/3)+1/2*I*3^(1/2)/d*(-d^2*c)^(1/3)))^(1/2)),_alpha=RootOf(_Z^3*d-8
*c))+8/d*c*(-1/27/d/c*(d*x^3+c)^(1/2)/(d*x^3-8*c)-1/486*I/d^3/c^2*2^(1/2)*sum((-d^2*c)^(1/3)*(1/2*I*d*(2*x+1/d
*(-I*3^(1/2)*(-d^2*c)^(1/3)+(-d^2*c)^(1/3)))/(-d^2*c)^(1/3))^(1/2)*(d*(x-1/d*(-d^2*c)^(1/3))/(-3*(-d^2*c)^(1/3
)+I*3^(1/2)*(-d^2*c)^(1/3)))^(1/2)*(-1/2*I*d*(2*x+1/d*(I*3^(1/2)*(-d^2*c)^(1/3)+(-d^2*c)^(1/3)))/(-d^2*c)^(1/3
))^(1/2)/(d*x^3+c)^(1/2)*(I*(-d^2*c)^(1/3)*_alpha*3^(1/2)*d-I*3^(1/2)*(-d^2*c)^(2/3)+2*_alpha^2*d^2-(-d^2*c)^(
1/3)*_alpha*d-(-d^2*c)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2/d*(-d^2*c)^(1/3)-1/2*I*3^(1/2)/d*(-d^2*c)^(1/3)
)*3^(1/2)*d/(-d^2*c)^(1/3))^(1/2),-1/18/d*(2*I*(-d^2*c)^(1/3)*3^(1/2)*_alpha^2*d-I*(-d^2*c)^(2/3)*3^(1/2)*_alp
ha+I*3^(1/2)*c*d-3*(-d^2*c)^(2/3)*_alpha-3*c*d)/c,(I*3^(1/2)/d*(-d^2*c)^(1/3)/(-3/2/d*(-d^2*c)^(1/3)+1/2*I*3^(
1/2)/d*(-d^2*c)^(1/3)))^(1/2)),_alpha=RootOf(_Z^3*d-8*c)))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(-d*x^3+8*c)^2/(d*x^3+c)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.79474, size = 356, normalized size = 5.56 \begin{align*} \left [\frac{5 \,{\left (d x^{3} - 8 \, c\right )} \sqrt{c} \log \left (\frac{d x^{3} - 6 \, \sqrt{d x^{3} + c} \sqrt{c} + 10 \, c}{d x^{3} - 8 \, c}\right ) - 24 \, \sqrt{d x^{3} + c} c}{81 \,{\left (c d^{3} x^{3} - 8 \, c^{2} d^{2}\right )}}, \frac{2 \,{\left (5 \,{\left (d x^{3} - 8 \, c\right )} \sqrt{-c} \arctan \left (\frac{\sqrt{d x^{3} + c} \sqrt{-c}}{3 \, c}\right ) - 12 \, \sqrt{d x^{3} + c} c\right )}}{81 \,{\left (c d^{3} x^{3} - 8 \, c^{2} d^{2}\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(-d*x^3+8*c)^2/(d*x^3+c)^(1/2),x, algorithm="fricas")

[Out]

[1/81*(5*(d*x^3 - 8*c)*sqrt(c)*log((d*x^3 - 6*sqrt(d*x^3 + c)*sqrt(c) + 10*c)/(d*x^3 - 8*c)) - 24*sqrt(d*x^3 +
 c)*c)/(c*d^3*x^3 - 8*c^2*d^2), 2/81*(5*(d*x^3 - 8*c)*sqrt(-c)*arctan(1/3*sqrt(d*x^3 + c)*sqrt(-c)/c) - 12*sqr
t(d*x^3 + c)*c)/(c*d^3*x^3 - 8*c^2*d^2)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{5}}{\left (- 8 c + d x^{3}\right )^{2} \sqrt{c + d x^{3}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**5/(-d*x**3+8*c)**2/(d*x**3+c)**(1/2),x)

[Out]

Integral(x**5/((-8*c + d*x**3)**2*sqrt(c + d*x**3)), x)

________________________________________________________________________________________

Giac [A]  time = 1.10975, size = 78, normalized size = 1.22 \begin{align*} \frac{2 \,{\left (\frac{5 \, \arctan \left (\frac{\sqrt{d x^{3} + c}}{3 \, \sqrt{-c}}\right )}{\sqrt{-c} d} - \frac{12 \, \sqrt{d x^{3} + c}}{{\left (d x^{3} - 8 \, c\right )} d}\right )}}{81 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(-d*x^3+8*c)^2/(d*x^3+c)^(1/2),x, algorithm="giac")

[Out]

2/81*(5*arctan(1/3*sqrt(d*x^3 + c)/sqrt(-c))/(sqrt(-c)*d) - 12*sqrt(d*x^3 + c)/((d*x^3 - 8*c)*d))/d